
CMK: WHAT ARCHITECTS NEED TO KNOW
A white paper on Customer Managed Keys



© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 2

CMK: What architects need to know

WHAT IS CMK?

Customer Managed Keys, or CMK, is a cloud architecture that gives customers owner-

ship of the encryption keys that protect some or all of their data stored in SaaS applica-

tions.

CMK is known by many names:

•	 EKM - Enterprise Key Management

•	 BYOK - Bring Your Own Keys

•	 CSK - Customer Supplied Keys

•	 BYOE - Bring Your Own Encryption

Regardless of name, CMK has these characteristics:

•	 Per-tenant encryption for some or all customer data.

•	 Your customer (tenant) manages a master key or keys needed for decryption.

•	 Your customer can independently monitor all data access.

•	 Your customer can independently revoke access at any time.

This whitepaper gives cloud, enterprise, and software architects technical context 

behind CMK, presents a reference architecture, and discusses implementation patterns 

and tradeoffs.

HOW CMK GENERALLY WORKS

In CMK, you encrypt sensitive customer data before you store it. When you need data 

access, you call your customer’s infrastructure to get the decryption key. Your custom-

er can revoke access by refusing to return the key, and they get an independent audit 

event on every request.

 
You Store

Encrypted Data + Encrypted Keys

App Layer

Data Layer KMS SIEM

 
Your Customer

Controls Keys and Audits Access

“For many large 
enterprises, ownership 
and control of 
encryption keys is a 
baseline requirement for 
SaaS adoption.”

	 - Forrester

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 3

CMK: What architects need to know

The Envelope Encryption Pattern
Storing and encrypting data in CMK involves multiple layers of keys. The typical ap-

proach uses two layers and is referred to as “envelope encryption.” In envelope encryp-

tion, you first encrypt data with a data encryption key or DEK. You use a second master 

key, or MK, to encrypt the DEK, producing an Encrypted DEK or EDEK. 

You have access to the DEK while you are encrypting or decrypting, but you agree to 

wipe the key from memory after use. You never persist the DEK to storage. Instead, you 

store the encrypted DEK, or EDEK, alongside encrypted data. Typically you add a col-

umn to your database schema or persist the EDEK as object metadata. 

The process of encrypting a key is known as key wrapping. The wrapping key is generi-

cally called a key encryption key or KEK.

In CMK, the MK needed to decrypt the EDEK is held by the customer’s Key Management 

System (KMS). You ask the KMS to decrypt the EDEK. If the KMS grants access, it will 

unwrap and return a DEK which you in turn use to decrypt data. You then wipe the DEK 

from memory. The master key never leaves control of your customer. In a two-level hier-

archy, the MK serves the role of the key encryption key.

DEK

EDEK

Data Encrypted Data

wiped after use

CMK (KEK)

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 4

CMK: What architects need to know

 
Envelope encryption with two keys

D
e

fin
iti

o
n

s

plaintext Unencrypted data

ciphertext Encrypted data

DEK The data encryption key (DEK) is the key used to encrypt plaintext data. 

In practice, the DEK always uses symmetric encryption.

KEK The DEK is wrapped (encrypted) by a key encryption key (KEK). In prac-

tice, a KEK can be symmetric or asymmetric (public/private key pair).

EDEK The encrypted data encryption key.

MK The Master Key controlled by the Customer KMS. The MK serves the 

role of the key encryption key. The MK never leaves the Customer KMS.

O
p

e
ra

tio
n

s

encrypt
2-level { EDEK, ciphertext } = encrypt(plaintext) 

 
composed by... 
 
// The customer KMS generates a DEK and wraps it 
{ DEK, EDEK } = generateKeys() 
 
// The DEK is wiped from memory after use 
ciphertext = encrypt(plaintext, DEK)

decrypt
2-level plaintext = decrypt(ciphertext, EDEK) 

 
composed by... 
 
// The customer KMS unwraps the EDEK with its MK  
DEK = unwrap(EDEK) 
 
// the DEK is wiped from memory after use 
plaintext = decrypt(ciphertext, DEK)

 
Customer Control and Independent Audit
CMK allows your customer to independently revoke and transparently monitor access 

to their data stored in your SaaS application. Basically, if your company shows up in the 

news with the term “breach,” your customers want to kill access immediately. As CMK 

increasingly becomes labeled a “best practice,” your customers are contractually (e.g. 

insurance) and legally (e.g. HIPAA) obligated to insist on its adoption.

The sequence diagram below shows the decryption data flow. Notice how the log re-

quest data flow provides independent monitoring and the 403 allows revocation.

https://ironcorelabs.com
https://docs.ironcorelabs.com/concepts/transform-encryption
https://docs.ironcorelabs.com/concepts/transform-encryption


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 5

CMK: What architects need to know

 

Customer data is encrypted and decrypted locally in your infrastructure using high-

speed symmetric encryption operations. Only the EDEK, a small payload, goes back to 

your customer’s infrastructure to be unwrapped. We’ll see later that EDEK decryption 

can be further optimized.

IRONCORE CMK ARCHITECTURE

IronCore provides a turnkey CMK Implementation that you can quickly and easily inte-

grate into your SaaS application. Even if you decide to implement your own CMK solu-

tion, the IronCore architecture can inform your technical approach.

Application 
Layer

Data Layer
Tenant 

Security Proxy

Configuration
Broker

Web Browser (Admin)

AWS

Customer KMS / HSM Customer Logging

Azure GCP CloudTrail Splunk Stackdriver

Client Library

Zero-trust configuration store

End-to-end Encryption

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 6

CMK: What architects need to know

Data Layer
CMK is a server-side approach to encryption. Generally speaking, you want to encrypt 

on your server as early as possible and decrypt as late as possible. In practice, the easi-

est way to integrate is to find persistence layers and encrypt where fetch/store activities 

happen. Finding the right data seam is often the most challenging aspect of integration. 

Look for the following:

•	 Anywhere fetch and store have been consolidated to make access control more reli-
able.

•	 Data transfer objects used to serialize and deserialize.

•	 Code generated from formal data interface definitions such as protobuf, GraphQL, or 
Swagger.

When you have identified one or more data seams, use the IronCore SDK API calls:

A core design principle of IronCore’s service is to remove decisions from individual 
developers. Getting security and cryptography right is notoriously error-prone. The Iron-

Core API is simple. Encryption policy is metadata-driven and separated as a cross-cut-

ting concern. In this way policy enforcement is architected directly into your platform 

and access rules are defined, tested and 

audited by security specialists.

The IronCore SDK is embedded in your 

data layer and hides the details of enve-

lope encryption.

The SDK gets a generated DEK and 

EDEK from the Tenant Security Proxy 

(TSP, discussed below). The SDK en-

crypts plaintext to ciphertext with the 

DEK. The DEK is wiped from memory and 

the EDEK and ciphertext are returned to the data layer of your SaaS application.

Writing on an iMessage 
vulnerability…

“There is an important 
lesson in this: security is 
hard. Apple Computer 
has one of the best 
security teams on the 
planet. This feature 
was not tossed out in 
a day; it was designed 
and implemented with 
a lot of thought and 
care. If this team could 
make a mistake like 
this, imagine how bad 
a security feature is 
when implemented by a 
team without this kind of 
expertise.

Getting security right 
is hard for the best 
teams in the world. It’s 
impossible for most 
teams.”

	 - Bruce Schneier

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 7

CMK: What architects need to know

On decrypt, the SDK makes a request to the Tenant Security Proxy to unwrap the EDEK. 

The SDK decrypts the ciphertext and wipes the DEK from memory. The plaintext is re-

turned to the data layer of your application. 

IronCore provides a batch API for parallel encryption and decryption operations. The en-

cryption server is horizontally scalable and has an optional key leasing mode discussed 

below. This enables highly performant batch operations.

Metadata
CMK gives your customers the ability to independently monitor data access. The meta-

data passed on encrypt and decrypt operations enriches the information included in this 

audit trail.

Default metadata properties define who (tenant and user), what (data label or classifica-

tion), and where (end user IP address or data center location). You can augment metada-

ta with custom properties for additional audit, policy and control.

Audit trails are logged to your customer’s preferred Security and Incident Event Man-

agement (SIEM) system. In addition to the log events produced by your customer’s KMS, 

IronCore’s implementation streams enriched events and telemetry to your customer’s 

SIEM infrastructure.

“Data privacy concerns 
are causing significant 
sales cycle delays for 
up to 65 percent of 
businesses worldwide.”

- Cisco Privacy Study

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 8

CMK: What architects need to know

Joins, Filters and Search
CMK does not impact joins as primary and foreign keys should not be encrypted.

Sorting and filtering of encrypted fields can be performed in-memory with no security 

implications. If in-memory is not possible or practical, an order-revealing or order-pre-

serving encryption scheme may be appropriate.

IronCore works with customers to determine what is needed and appropriate while 

explaining security trade-offs.

Tenant Security Proxy
The Tenant Security Proxy (TSP) facilitates the 

encryption and decryption of DEKs and EDEKs. It 

communicates with your customer’s KMS or Hard-

ware Security Module (HSM) to provide control and 

auditing.

With IronCore, you integrate once and immediately 

gain support for all popular KMS configurations. The TSP integrates with key manage-

ment systems and hardware security modules from Gemalto, AWS, Azure, GCP and 

other vendors. 

Leveraging IronCore makes if practical for your SaaS application to implement CMK 

without the integration complexity and ongoing technical debt associated with support-

ing, testing and auditing new and updated customer key management infrastructure.

In some configurations, the TSP performs encrypt and decrypt operations in the service 

using keys leased from the customer’s KMS. In other configurations, the customer’s KMS 

performs all of the wrapping and unwrapping.

The Tenant Security Proxy has no persisted state. It is a multi-tenant Docker container 

that runs in your infrastructure and scales horizontally. It configures itself by calling the 

Configuration Broker (discussed below) on startup and as needed. IronCore encrypts 

the configuration used to access tenant KMS systems with end-to-end encryption. Not 

even administrators can access this information. In a do-it-yourself (DIY) scenario, you 

need to safeguard KMS secrets carefully.

IronCore’s code is independently audited by the NCC Group, a firm that specializes in 

cryptography services. IronCore transparently publishes security and trust information in 

our Trust Center where we discuss our SOC2 certification, privacy measures, and other 

Gemalto

AWS KMS

Azure

KMI
P

Proprietar
y

Proprietary

Tenant 
Security Proxy

https://ironcorelabs.com
https://www.nccgroup.trust/us/our-services/cyber-security/specialist-practices/cryptography-services/
https://ironcorelabs.com/trust-center/


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 9

CMK: What architects need to know

industry standards.

The IronCore Tenant Security Proxy generates audit events indicating every access of 

data, what was accessed, by whom, and from where. IronCore feeds these events to 

your customer’s Security and Incident Event Management (SIEM) system so your cus-

tomer’s security and compliance teams can use their existing monitoring and reporting 

systems rather than needing to adopt and look at yet another dashboard. A wide vari-

ety of SIEMs are supported. IronCore audit events bolster the logs generated directly 

from your customer’s KMS with richer details needed for data maps, investigations, and 

compliance reporting. Audit events and telemetry information are also available to your 

application.

Improving Performance and Availability with Key Leasing
The CMK pattern uses a remote call to your customer’s network every time data is 

encrypted or decrypted. Remote calls introduce latency whenever sensitive data is ac-

cessed. The reliance on your customer’s network to be online and reachable introduces 

uptime risks that threaten the availability terms of your service level agreements (SLAs).

Key leasing is an alternate approach supported by IronCore’s Tenant Security Proxy. 

Key-leasing relies on three layers of keys, in which the customer’s KMS delegates limit-

ed control to the IronCore Tenant Security Proxy.

Key leasing uses three layers of keys

D
e

fin
iti

o
n

s

LEK The lease encryption key (LEK) is delegated by the KMS to serve as a 

local key encryption key.

MK The LEK is encrypted (wrapped) by a Master Key (MK). In key leasing, the 

envelope encryption pattern is applied twice. The MK is the key encryp-

tion key for the LEK and the LEK is the key encryption key for the DEK. 

The MK never leaves the KMS.

ELEK The encrypted lease encryption key (ELEK).

“Firms should consider 
greater use of 
encryption and BYOK, 
especially for the 
cloud...to both address 
growing compliance 
mandates and also to 
move to industry best 
practices.”

	 - 451 Research

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 10

CMK: What architects need to know

Key leasing uses three layers of keys

O
p

e
ra

tio
n

s

lease / refresh // TSP calls KMS, caches LEK with short Time-To-Live 
{ LEK, ELEK } = leaseKeys()

encrypt
3-level { EDEK, ciphertext } = encrypt(plaintext) 

 
composed by...  
 
DEK = generateKey()    // TSP 
EDEK = wrap(DEK, LEK)  // TSP encrypts DEK with LEK 
ciphertext = encrypt(plaintext, DEK) // SDK

decrypt
3-level plaintext = decrypt(ciphertext, EDEK) 

 
composed by... 
 
DEK = unwrap(EDEK, LEK) // TSP decrypts EDEK with LEK 
plaintext = decrypt(ciphertext, DEK) // SDK

You can implement key leasing as part of a DIY implementation, but it requires more 

trust from your customer. Using a third-party encryption service, even if run locally, miti-

gates that issue.

Customers typically embrace key leasing for better performance and availability. Avail-

ability is improved because keys are leased asynchronously and decryption does not 

need to wait for a lease renewal. By default, IronCore renews leases every 5 minutes 

but will hold a key for up to an hour before wiping the leased key if the remote key serv-

er remains unavailable. See the sequence diagram in Appendix A for additional details.

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 11

CMK: What architects need to know

If you implement key-leasing, your customer’s KMS can no longer independently log 

data access events. IronCore’s key-leasing implementation streams rich audit events to 

your customer’s SIEM infrastructure in this mode.

Configuration Broker
The IronCore configuration broker lets your customer configure the many settings that 

are part of their security policy, key management infrastructure, and SIEM system. It is 

branded with your logo as a SaaS provider and allows your customers to self-serve.

The IronCore Configuration Broker is in a zero trust position and uses end-to-end en-

cryption. IronCore encrypts sensitive information, such as KMS access credentials, in the 

browser of your customer’s administrator, and the configuration can only be decrypted 

by the Tenant Security Proxy instances at point of use. The encrypted configuration is 

stored by IronCore for distribution to Tenant Security Proxy instances. IronCore cannot 

read the sensitive information it brokers.

In a DIY implementation, you should be careful with how you handle your customer’s 

sensitive configuration information and have your code independently audited.

Note that as its own SaaS application, the Configuration Broker is continually updated 

with new integrations.

Native KMS Management
Key lifecycle management is the concept that keys are “born,” serve a useful lifetime, 

and are eventually archived or revoked. Your customer’s security organization has strict 

policies governing key lifecycles.

Once your customer initially configures CMK via the configuration broker, they perform 

all key lifecycle management from their native KMS or HSM. IronCore ties encrypted 

information back to the KMS and key that was used to encrypt the data, and automati-

cally tracks key rotations. Your customers prefer to maintain control using their KMS, and 

it reduces your technical support costs.

A Note on Trust Models and End-to-End Encryption
Trust is a characteristic of a security architecture. CMK is a trust-but-verify model, in 

which you encrypt and decrypt data on the server-side. You can access data, but your 

customer has control over encryption keys.

Sample CMK Offerings: 
 
Slack EKM
Salesforce Shield
Box KeySafe
Microsoft BYOK

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 12

CMK: What architects need to know

End-to-end encryption uses a stronger zero-trust model. By default, services do not 

have access to encrypted data. You typically encrypt and decrypt on the client or from a 

cloud service with privileged identity.

IronCore provides end-to-end encryption options in addition to CMK, and the approach-

es can be mixed. We recommend that SaaS vendors begin with server-side CMK and 

selectively and iteratively provide client-side protections for the most sensitive data. For 

example, it’s common for SaaS applications to provide CMK protection of records and 

fields and end-to-end encryption of sensitive, opaque file attachments.

Iterative Approaches
Most commercial implementations of data privacy and security are delivered iteratively. 

For example, when Salesforce launched their Shield Encryption Platform, only custom 

fields and manual key management were supported. Over several years they added 

attachments and selected standard fields. With each release, the list of standard fields 

has grown. In Winter 2019 they are extending encrypted fields to applications listed on 

AppExchange, and adding a “cache-only key service” which provides true CMK support.

To get started in your own system, look to the sensitivity and shape of your data. Sen-

sitivity is a data classification such as restricted, private or public. Shape is the format 

of your persisted data - files or buckets, database records and fields, log files, search 

indices or message queues.

Don’t start out encrypting all data in all shapes. Identify the most critical and sensitive 

data stored in easily supported systems (e.g., files or buckets). Add more data elements 

and additional persistence systems over time. Ship progress to immediately shorten 

sales cycles and create market differentiation.

CONCLUSION

For many large enterprises, Customer Managed Keys (CMK) are becoming a baseline 

requirement for cloud software. IronCore provides a turnkey solution that is quickly and 

easily integrated to get you to market faster with security that is a competitive differenti-

ator.

With IronCore, you integrate once to support many KMSes. Your customers get a secure 

interface to manage their KMS configuration without providing that data to you. For 

more sensitive data, you can encrypt end-to-end on the same platform. The developer 

experience is simple and continuously improved. NCC Group audits critical security 

code. Policy driven controls and rich logging are supported out of the box. Performance 

“Buyers of cloud service 
and mobile devices 
should demand that 
providers offer them 
the option of managing 
their own encryption 
keys.” 

	 - Gartner

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 13

CMK: What architects need to know

and availability are optimized.

Most importantly, integrating IronCore accelerates your roadmap and eliminates com-

plex security technical debt. Cloud security is evolving rapidly in response to new gov-

ernment regulation and increasing system complexity. IronCore tracks these changes 

and keeps you current with the latest, most secure options for you and your customers.

https://ironcorelabs.com


© IronCore Labs, Inc. • info@ironcorelabs.com • 415-968-9607 • ironcorelabs.com 14

CMK: What architects need to know

APPENDIX A: KEY LEASING AND AVAILABILITY

https://ironcorelabs.com


ABOUT IRONCORE

We are a data privacy platform for application layer encryption and customer managed keys (CMK). We enable 

software developers and businesses to rapidly build enterprise applications with strong data control. Data own-

ers decide who can access their data, monitor how it’s used, when, where, and by whom, and can revoke that 

access at any time. We are the fastest and easiest way to control data in multi-cloud and SaaS environments.

Copyright © 2019, IronCore Labs. All rights reserved. This document is provided for information purpos-
es only, and the contents hereof are subject to change without notice. This document is not warranted 
to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied 
in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. 
We specifically disclaim any liability with respect to this document, and no contractual obligations are 
formed either directly or indirectly by this document.

IronCore Labs 				    Inquiries
1750 30th Street #500			   Email: info@ironcorelabs.com
Boulder, CO 80301, USA			  Phone: +1.415.968.9607

CONNECT WITH US

              blog.ironcorelabs.com

              linkedin.com/company/ironcore-labs

              twitter.com/ironcorelabs

              ironcorelabs.com

1.0.1

https://blog.ironcorelabs.com
https://linkedin.com/company/ironcore-labs
https://twitter.com/ironcorelabs
https://ironcorelabs.com

